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We first visually illustrate our proposed loss terms in the paper (Sec. A). Then, we provide
details on the SoftArgMax2D function used in our SoftMatch loss and how it is applied (Sec.
B). Next, we present the ablation study on using the visual word constraint in VW-CORAL
and CD-SOS losses (Sec. C). Finally, we show more example matching results (Sec. D).

A Visual Illustration of Introduced Losses

In this section, we detail the three proposed loss terms in the paper, with the help of figures.

A.1 Visual Vocabulary Construction

As discussed in Sec. 3.4 in the paper, we build the visual vocabulary based on the extracted
features from a set of randomly sampled reference images, using the existing feature extrac-
tion network (the pre-trained D2-Net [1] in our case) through K-means clustering (Fig. A).

Existing
Feature Extractor Reference Images Descriptors Clustering Visual Word

Figure A: Visual vocabulary construction: The existing feature extractor is used to compute the de-
scriptors from the reference images. Then, we perform K-means clustering to obtain visual words.
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Figure B: Visual word assignment: The source and the target descriptors are extracted from a pair of
reference and query images. The source descriptors are assigned to the closest visual words. The visual
word assignment for a target descriptor is determined by that of its corresponding source descriptor,
based on the training feature correspondences.

Figure C: Our VW-CORAL loss aligns the dis-
tribution of the source descriptors with that of
the target descriptors based on the second-order
statistics for each visual-word-based group.

Figure D: Our CD-SOS loss enforces the pair-
wise distances of target descriptors (green) to be
similar to those of the source descriptors (ma-
genta) for each visual-word-based group.

A.2 Visual Word Assignment

The constructed visual words are then used to group the source descriptors and its corre-
sponding target descriptors that are each extracted from a pair of reference and training
image, as in Fig. B. The image pairs are obtained from the registration result of the training
images to the reference 3D point cloud. A source descriptor is assigned to the closest visual
word. The target descriptor is assigned to the same visual word as its corresponding source
descriptor, based on the training feature correspondences (See Sec. 3.3 of the paper).

A.3 Per Visual Word Correlation Alignment Loss (VW-CORAL)

Fig. C illustrates the VW-CORAL loss that we introduce in Sec. 3.2.2 of the paper. Once
the source and the target descriptors are grouped based on their visual word assignment, our
VW-CORAL loss minimizes the difference in second-order statistics between the source and
the target descriptors for each visual-word-based group separately.

A.4 Cross-Domain Second Order Similarity Loss (CD-SOS)

Fig. D depicts the concept of our CD-SOS loss detailed in Sec. 3.2.3 of the paper. It en-
forces the pairwise distances between the target descriptors to be similar to those of the
corresponding source descriptors, which are assigned to the same visual words. Compared
to the VW-CORAL loss, where the covariance of the distribution is considered, the CD-SOS
loss poses more granular supervision by considering the pairwise relationships between the
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descriptors in each domain.
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Figure E: For a feature (xxxS

i , pppS
i ) in the source image IS, our proposed SoftMatch loss penalizes its

matched keypoints p̂ppT
i in the target image IT that are far from the actual corresponding keypoints pppT

i+.
The white line represents the distance between the two: di = ‖p̂ppT

i − pppT
i+‖2. The larger the distance di

is, the stronger the loss penalizes the match formed by xxxS
i .

A.5 Soft Matching Loss (SoftMatch)
Fig. E illustrates our SoftMatch loss that is described in Sec. 3.2.4 of the paper. The loss pe-
nalizes the matches that disagree with the given pose. For a source descriptor xxxS

i at keypoint
location pppS

i (squares in Fig. E), we perform a differentiable matching procedure to obtain
the estimate of the matched keypoint p̂ppT

i (triangles in Fig. E) in the target image. We then
compute the distance between p̂ppT

i and the actual corresponding point pppT
i+ (circles in Fig. E)

in the image. The actual corresponding point pppT
i+ is obtained by reprojecting the 3D point

ccci that corresponds to the source feature (xxxS
i , pppS

i ) in the point cloud C to the target image IT ,
using the training pose generated as a result of image registration (or the ground-truth pose
if available, as in the case of the CSC RobotCar Seasons dataset [2]). Thus, the further away
the matched keypoint p̂ppT

i is from the actual corresponding target keypoint pppT
i+, the more it is

penalized by the loss.

B SoftArgMax2D in the SoftMatch Loss
In order to make the whole matching procedure differentiable for the SoftMatch loss (Sec.
3.2.4), we use the SoftArgMax2D function [3] to estimate coordinates of matched keypoints
as in Eq. 4 of the main paper. For a given source descriptor xxxS

i , the coordinates of its matched
keypoint p̂ppT

i in the target domain image can be obtained by applying the SoftArgMax2D on
the 2D match heatmap MMM(xxxS

i ) ∈ RW×H , where W and H denotes the width and the height of
the target image. It is a sparse matrix constructed by matching i-th source descriptor xxxS

i and
all detected local features (xxxT

j , pppT
j )’s in the target image:

MMM(xxxS
i ) = [mwh], (1)

where each entry mwh is the match score between the source descriptor xxxS
i and the target

descriptor xxxT
j at pixel location pppT

j = (w,h) if the keypoint is detected at that location and 0
otherwise:

mwh =

{
xxxT

j · xxxS
i if (w,h) = pppT

j

0 otherwise.
(2)
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(a) No window
(a)

(b) Local window
Figure F: The effect of the local window KKK. The figures illustrate the output of SoftArgMax2D
when (a) no window is used (uniform weights throughout all locations) and when (b) a local window is
applied at the true argmax locations, as in our method. The upward triangles represent the true argmax-
regressed coordinates q̂qqT

i and the downward triangles the SoftArgMax2D-regressed coordinates p̂ppT
i .

The SoftArgMax2D function [3] is defined as follows:

p̂T
i,x =

W

∑
w=1

H

∑
h=1

KKKw,h,xσ(mwh), (3)

p̂T
i,y =

W

∑
w=1

H

∑
h=1

KKKw,h,yσ(mwh), (4)

where KKK is a weight matrix corresponding to the xy-pixel coordinates and σ(mwh) is the
softmax operation on MMM(xxxS

i ):

σ(mwh) =
emwh

∑
W
k=1 ∑

H
l=1 emkl

. (5)

Finally, the coordinates of matched keypoint for the i-th source descriptor xxxS
i become:

p̂ppT
i = (p̂T

i,x, p̂T
i,y)
>. (6)

In practice, the weight matrix KKK is set to be a local window around the true argmax
location q̂qqT

i = argmax(w,h)(MMM(xxxS
i )) such that it has non-zero values only near q̂qqT

i . This is
because the output of softmax, σ(mwh) is often multimodal, especially when the 2D match
heatmap MMM(xxxS

i ) is large. The multimodal input to SoftArgMax2D without the appropriate
weight matrix KKK can result in the regressed coordinates that is far from the true argmax
location q̂qqT

i (Fig. F (a)). This is undesirable as we want to achieve the similar output to
argmax operation for descriptor matching, but in a differentiable manner. Thus, the input to
SoftArgMax2D is enforced to be unimodal by setting KKK to have non-zeros only near the true
argmax location q̂qqT

i as in the work of Luvizon et al. [3], regressing coordinates similar to the
argmax location q̂qqT

i as a result (Fig. F (b)).

C Ablation Study on the Visual-Words-Based Constraint
In this section, we assess the effectiveness of applying CORAL and CD-SOS per visual
word basis. Table A shows the localization recall using CORAL and CD-SOS loss with and
without the visual-word-based grouping, in addition to the correspondence lossLCorres on the
CSC RobotCar Seasons dataset [2], using an average of 35 training images as in the paper.
The results illustrate that applying feature alignment for each visual-word-based group is
beneficial, especially for the CD-SOS loss.
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Table A: Performance of CORAL and CD-SOS losses with and without the visual word
constraint on the CSC RobotCar Seasons dataset [2]

Losses VW Mean Recall
LCORAL [7] 7 52.0 / 78.8 / 87.9
LVW-CORAL 3 52.4 / 78.9 / 87.8
LCD-SOS 7 52.3 / 78.8 / 87.9
LCD-SOS 3 52.4 / 79.2 / 88.0

D More Qualitative Results
We provide more example matching results for the Aachen dataset [6] and CSC RobotCar
Seasons dataset [2] in Fig. G and Fig. H, respectively. In each figure, we show the inlier
matches between a pair of retrieved reference image and query image. We compare our
method with the pre-trained D2-Net [1] and fine-tuned models. It can be seen that the pro-
posed method improves the matching performance throughout diverse conditions, while the
fine-tuned models rarely outperforms the pre-trained model.
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Figure G: Qualitative results on the Aachen Day Night dataset [5] : The inlier matches are visualized
for each pair of the retrieved database image (left) and the the query image (right).
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Figure H: Qualitative results on the RobotCar Seasons Dataset [4]: The inlier matches are visualized
for each pair of the retrieved database image (left) and the the query image (right).
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