
BRUGGEMANN ET AL.,: BRANCHED MULTI-TASK NETWORKS 1

Supplementary Material:
Automated Search for Resource-Efficient
Branched Multi-Task Networks

David Bruggemann
brdavid@vision.ee.ethz.ch

Menelaos Kanakis
kanakism@vision.ee.ethz.ch

Stamatios Georgoulis
georgous@vision.ee.ethz.ch

Luc Van Gool
vangool@vision.ee.ethz.ch

Computer Vision Lab
ETH Zurich
Switzerland

1 Training Settings
In this section, we describe the training setup used for experiments on PASCAL-Context.
On NYUD-v2, the exact same setup was used, except that the number of training iterations
was halved. Training and evaluation code for this project was written using the PyTorch
library [8].

Data augmentation. We augment input images during training by random scaling with
values between 0.5 and 2.0 (in increments of 0.25), random cropping to input size (which
was fixed to 512×512 for full-resolution PASCAL-Context) and random horizontal flipping.
Image intensities are rescaled to the [-1, 1] range.

Task losses. For semantic segmentation and human parts segmentation we use a cross-
entropy loss (loss weights ωt = 1 and ωt = 2 in Equation 3 of the main text, respectively),
for saliency estimation a balanced cross-entropy loss (ωt = 5), for depth estimation a L1 loss
(ωt = 1), for surface normal estimation aL1 loss with unit vector normalization (ωt = 10) and
for edge detection a weighted cross-entropy loss (ωt = 50). For edge detection, the positive
pixels are weighted with 0.95 and the negative pixels with 0.05 on PASCAL-Context, while
on NYUD-v2 the weights are 0.8 and 0.2. ωt for each task was found by conducting a
logarithmic grid search over candidate values with single-task networks.

Optimization hyperparameters. Model weights θ are updated using Stochastic Gra-
dient Descent (SGD) with momentum of 0.9 and weight decay 0.0001. The initial learning
rate is set to 0.005 and decayed during training according to a ‘poly’ learning rate policy [1].
For the architecture distribution parameters α , we use an Adam optimizer [3] with learning
rate 0.01 and weight decay 0.00005. We use a batchsize of 8 and 16 for ResNet-50 and
MobileNetV2, respectively.

Architecture search. We update the supergraph sequentially for each task. Before the
architecture search, we ‘warm up’ the supergraph by training each operation’s model weights

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, and Lerer} 2017

Citation
Citation
{Chen, Papandreou, Kokkinos, Murphy, and Yuille} 2017

Citation
Citation
{Kingma and Ba} 2014

2 BRUGGEMANN ET AL.,: BRANCHED MULTI-TASK NETWORKS

θ (initialized with ImageNet weights) on the corresponding task only for 2000 iterations.
The architecture distribution parameters α are initialized with zeros. During the search, we
alternatively train α on 20% of the data and θ on the other 80%. This cycle is repeated until
θ has received 40000 updates. Over the course of training, the Gumbel-Softmax temperature
τ is annealed linearly from 5.0 to 0.1. Importantly, we use the batch-specific statistics for
batch normalization during the α update phase and reset the batch statistics before training
θ after every architecture change. Furthermore, to equalize the scale of candidate operations
for the search, we disable learnable affine parameters in the last batch normalization of ev-
ery operation. Finally, the momentum of the θ -optimizer is reset after every change to the
architecture.

Branched network training. After the architecture search, the resulting branched net-
work is retrained from scratch for 40000 iterations. The encoder network weights are ini-
tialized with ImageNet weights. For all operations that are shared between several tasks, we
divide the learning rate by the number of tasks sharing, since those operations receive more
updates.

2 Implementation of Baselines
For FAFS [5], we pre-train a fully shared network on all the tasks and then calculate the task
groupings in all layers greedily (starting from the last) according to the task affinity mea-
sure described in [5]. Note that for edge detection, we use the loss instead of the optimal
dataset F-measure to determine sample difficulty. Finding branching structures via the BMN
approach [9] involved training separate single-task networks and computing the Represen-
tational Similarity Analysis matrix from the resulting task-specific feature maps, exactly as
described in the paper. Various branching structures can be found by exhaustively search-
ing candidates among a reduced pool, containing all possible structures below a specified
MAdds value. To keep the comparison fair, we trained the branched structures resulting
from BMN and FAFS in exactly the same setting as ours.

We implemented cross-stitch networks [7], NDDR-CNN [2] and MTAN [4] based on
the code provided by the authors and information given in the papers. We use a similar
training setup as the one described for our method, however we conducted a logarithmic grid
search over learning rates for each baseline individually. For cross-stitch networks, applying
one unit per feature tensor (as opposed to channel-wise) yielded more stable results. The
weights of cross-stitch- and NDDR-CNN-units are initialized with α = 0.8 and β = 0.2

T−1 ,
where T is the number of tasks. Both methods are applied on the fully pre-trained single-task
networks. For MTAN with the MobileNetV2 backbone, we change the 3×3 convolutions in
the attention modules to depthwise separable convolutions. In general, all ReLU activations
are replaced with ReLU6 for MobileNetV2.

3 Implementation Verification
To show that our implementations of DeepLabv3+ with the above mentioned backbones
perform competitively for the tasks of interest, we compare in Table S1 our single-task per-
formances on PASCAL-Context with published results in [6]. Note that a direct comparison
is inconclusive even though the architectures are analogous, as the results in [6] are obtained
with different training setups. Nevertheless, the numbers demonstrate that our single-task

Citation
Citation
{Lu, Kumar, Zhai, Cheng, Javidi, and Feris} 2017

Citation
Citation
{Lu, Kumar, Zhai, Cheng, Javidi, and Feris} 2017

Citation
Citation
{Vandenhende, Georgoulis, Deprotect unhbox voidb@x protect penalty @M {}Brabandere, and Vanprotect unhbox voidb@x protect penalty @M {}Gool} 2019

Citation
Citation
{Misra, Shrivastava, Gupta, and Hebert} 2016

Citation
Citation
{Gao, Ma, Zhao, Liu, and Yuille} 2019

Citation
Citation
{Liu, Johns, and Davison} 2019

Citation
Citation
{Maninis, Radosavovic, and Kokkinos} 2019

Citation
Citation
{Maninis, Radosavovic, and Kokkinos} 2019

BRUGGEMANN ET AL.,: BRANCHED MULTI-TASK NETWORKS 3

Backbone SemSeg ↑ PartSeg ↑ Sal ↑ Norm ↓ Edge ↑
MobileNetV2, [6] 62.10 54.88 66.30 14.88 69.50
MobileNetV2, ours 65.11 57.54 65.41 13.98 69.50
ResNet-50, [6] 68.30 60.70 65.40 14.61 72.70
ResNet-50, ours 70.43 63.93 67.34 13.39 74.10

Table S1: DeepLabv3+ performance in a single-task setting on PASCAL-Context using ei-
ther MobileNetV2 or ResNet-50 as a backbone. We compare the performance obtained using
our implementation with the results published in [6].

Model MAdds ↓ SemSeg ↑ PartSeg ↑ Sal ↑ Norm ↓ Edge ↑ ∆m [%] ↑
Single 345.7B 70.43 63.93 67.34 13.39 74.10 -
Shared 154.6B 68.24 62.18 65.16 14.98 71.90 -4.80
BMTAS-1 199.0B 68.17 62.36 65.64 14.09 72.20 -3.20
BMTAS-2 225.8B 66.92 62.93 65.82 13.70 72.90 -2.56
BMTAS-3 298.2B 69.58 64.36 66.68 13.65 73.00 -1.00

Table S2: Comparison of our method with simple baselines on PASCAL-Context using a
ResNet-50 backbone. The resource loss weights λ for BMTAS were 2e-2, 5e-3 and 1e-3
respectively.

networks represent a strong baseline for comparison.

4 Complementary Results
Due to space limitations, the performances of our method and simple baselines for a ResNet-
50 backbone on PASCAL-Context (plotted on the right in Figure 2 of the main text) are
presented here in Table S2. For this setting, we choose not to report scores for cross-stitch
networks [7], NDDR-CNN [2] and MTAN [4] since we were unable to obtain competitive
performances for those approaches, despite the extensive learning rate grid-search.

References
[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L

Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. IEEE transactions on pattern analysis and machine
intelligence, 40(4):834–848, 2017.

[2] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise
feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3205–3214, 2019.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[4] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning

Citation
Citation
{Maninis, Radosavovic, and Kokkinos} 2019

Citation
Citation
{Maninis, Radosavovic, and Kokkinos} 2019

Citation
Citation
{Maninis, Radosavovic, and Kokkinos} 2019

Citation
Citation
{Misra, Shrivastava, Gupta, and Hebert} 2016

Citation
Citation
{Gao, Ma, Zhao, Liu, and Yuille} 2019

Citation
Citation
{Liu, Johns, and Davison} 2019

4 BRUGGEMANN ET AL.,: BRANCHED MULTI-TASK NETWORKS

with attention. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1871–1880, 2019.

[5] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio Feris.
Fully-adaptive feature sharing in multi-task networks with applications in person at-
tribute classification. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 5334–5343, 2017.

[6] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-
tasking of multiple tasks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1851–1860, 2019.

[7] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch
networks for multi-task learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 3994–4003, 2016.

[8] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in pytorch. 2017.

[9] Simon Vandenhende, Stamatios Georgoulis, Bert De Brabandere, and Luc Van Gool.
Branched multi-task networks: deciding what layers to share. arXiv preprint
arXiv:1904.02920, 2019.

