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(a) (b) (c) (d)
Figure 1: Examples of small (b) and large (d) training scene graphs and corresponding images ((a)
and (c) respectively) from Visual Genome (split [12]). Two related factors mainly affect the size of the
graphs: 1) the complexity of a scene (compare left and right images in the top three rows); and 2) the
amount of annotations (e.g. in the bottom row two images have similar complexity, but in one case the
annotations are much more sparse). On average, for more complex scenes, the graphs tend to be larger
and more sparse (d ≤ 2% on the depicted large graphs, (d)), because for many reasons it is challenging
to annotate all edges. In contrast, simple scenes can be described well by a few nodes, making it easier
to label most of the edges, which makes graphs more dense (d > 15% on the depicted small graphs, (b)).

(a) (b) (c) (d)
Figure 2: For comparison, we illustrate scene graphs of the same images, but annotated in GQA. As
opposed to VG, scene graphs in GQA are generally larger and more dense, primarily due to “left of”
and “right of” edge annotations (see detailed dataset statistics in Table 1).
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b = 1 b = 6 b = 6, edge sampling
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Figure 3: Plots additional to Figure 4 in the main paper. Graph density d of a batch of scene graphs
for different batch sizes b for VG (top row) and GQA (bottom row). For b = 1: MFG ≈ 0.5N for VG
and MFG ≈ 8N. Larger batches make the density of a batch less variable and, on average, larger. This is
because by stacking scene graphs in a batch, there are no BG edges between different graphs, so MBG
grows slower making the density larger. Thus, increasing the batch size partially fixes the discrepancy
of edge losses between small and large scene graphs. Subsampling edges during training also helps to
stabilize and increase graph density. We explore this effect in more detail on Figure 4.

VG [12] VTE [15] GQA [4] GQA-nLR

#obj classes 150 200 1,703 1,703
#rel classes 50 100 310 308
# train images 57,723 68,786 66,078 59,790
# train triplets (unique) 29,283 19,811 470,129 98,367
# val images 5,000 4,990 4,903 4,382
# test images 26,446 25,851 10,055 9,159
# test-ZS images 4,519 653 6,418 4,266
# test-ZS triplets (unique/total) 5,278/7,601 601/2,414 37,116/45,135 9,704/11,067

min-max avg±std min-max avg±std min-max avg±std min-max avg±std

N train 2-62 12±6 2-98 13±9 2-126 17±8 2-126 17±8

d (%) train 0.04-100 7±8 0.7-100 12±13 0.5-100 17±10 0.03-100 3±5

N test 2-58 12±7 2-110 13±9 2-97 17±8 2-67 17±8

d (%) test 0.12-100 6±8 0.6-100 11±12 0.6-100 17±10 0.05-100 3±5

N test-ZS 2-55 14±7 2-78 8±11 2-97 19±8 2-65 18±8

d (%) test-ZS 0.05-50 2±4 0.05-100 3±7 0.03-50 3±3.6 0.02-50 1.5±3

Table 1: Statistics of Visual Genome [6] variants used in this work. GQA-nLR is our modification of
GQA [4] with predicates ‘to the left of’ and ‘to the right of’ excluded from all training, validation and
test scene graphs. Graph density d decreases dramatically in this case, since those two predicates are
the majority of all predicate labels.

1.2 Evaluation
Evaluation of zero/few shot cases. To evaluate n-shots using image-level recall, we need to
keep in the test images only those triplets that have occurred no more than n times and remove
images without such triplets. This results in computing recall for very sparse annotations, so
the image-level metric can be noisy and create discrepancies between simple images with a
few triplets and complex images with hundreds of triplets. For example, for an image with
only two ground truth triplets, R@100 of 50% can be a quite bad result, while for an image
with hundreds of triplets, this can be an excellent result. Our Weighted Triplet Recall is
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Figure 4: In these experiments, we split the training set of Visual Genome (split [12]) into five subsets
with different graph sizes in each subset. This allows us to study how well the models learn from
graphs of different sizes. Edge sampling. One way to stabilize and increase graph density is to sample
a fixed number of FG and BG edges (on the legend, we denote the total possible number of edges
per image, M). So we compare results with and without this sampling. Sampling improves baseline
results of models trained on larger graphs, however, our best results are still consistently higher than
the best baseline results. Even though sampling partially solves the problem of varying density, it
does not solve it in a principle way as we do. Sampling only sets the upper bound on the number of
edges, so some batches have fewer edges, creating a discrepancy between the losses of edges. Setting
a lower bound on the number of edges is challenging, because some graphs are very sparse, meaning
that frequently many more graphs need to be sampled to get enough edges, which requires much more
computational resources. Potential oversmoothing. In case of our loss the results for larger graphs do
not improve in some cases or even slightly get worse. We believe that besides density normalization,
another factor making it challenging to learn from large graphs, can be related to the “oversmoothing”
effect [9]. Oversmoothing occurs when all nodes after the final graph convolution start to have very
similar features. This typically happens in deep graph convolutional networks. But oversmoothing can
also occur in complete graphs, which are used in the SGG pipeline as the input to message passing
(see Figure 1 in the main paper). Complete graphs lead to node features being pooled (averaged)
over a very large neighborhood (i.e. all other nodes) and averaging over too many node features is
detrimental to their discriminative content. A direction for resolving this issue can be using some form
of edge proposals and attention over edges [11, 13].

computed for all test triplets joined into a single set, so it resolves this discrepancy.

Constrained vs unconstrained metrics. In the graph constrained case [12], only the
top-1 predicted predicate is considered when triplets are ranked, and follow-up works [7,
14] improved results by removing this constraint. This unconstrained metric more reliably
evaluates models, since it does not require a perfect triplet match to be the top-1 prediction,
which is an unreasonable expectation given plenty of synonyms and mislabeled annotations
in scene graph datasets. For example, ‘man wearing shirt’ and ‘man in shirt’ are similar
predictions, however, only the unconstrained metric allows for both to be included in ranking.
The SGDET+ metric [13] has a similar motivation as removing the graph constraint, but it
does not address the other issues of image-level metrics.
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Figure 5: In these experiments, we take a Message Passing model, trained on all scene graphs of
Visual Genome, and test it on graphs of different sizes. To plot the curves, we sort the original test set
by the number of nodes in scene graphs and then the split the sorted set into several bins with an equal
number of scene graphs in each bin ( 1000 per bin). Each point denotes an average recall in a bin. As
was shown in Figure 4, our loss makes learning from larger graphs more effective. Here, we also show
that our loss makes the models perform better on larger graphs at test time. We believe that since our
loss penalizes larger graphs more during training, the model better learns how to process large graphs.
However, we observe the performance drops for larger graphs both for the baseline and our loss. One
of the reasons for that might be related to oversmoothing, which can be more pronounced in large
graphs (also discussed in Figure 4). Another reason can be a lack of large graphs (e.g. > 40 nodes) in
the training set. This would align with prior work [5], showing that generalization to larger graphs is
challenging and proposed attention as a way for addressing it. This problem, in the context of scene
graphs, can be addressed in future work. For example, one interesting study may include training on so
called “region graphs”, describing small image regions, available in Visual Genome [6] and attempting
to predict full scene graphs.

VG [12] VTE [15] GQA [4] GQA-nLR

Object detector Faster R-CNN [8] Mask R-CNN [2], chosen in lieu of Faster R-CNN, since it achieves better
performance due to multitask training on COCO. In SGGen, we extract
up to 50 bounding boxes with a confidence threshold of 0.2 as in [3].

Detector’s back-
bone

VGG16 ResNet-50-FPN

Detector pretrained
on

VG [12] COCO (followed by fine-tuning on GQA in case of SGGen)

Learning rate 0.001×b 0.001×b 0.002×b (increased
due to larger graphs
in a batch)

0.001×b

Batch size (# scene
graphs), b

6

# epochs MP: 20, lr decay by 0.1 after 15 epochs; NM: 12, lr decay by 0.1 after 10 epochs

Table 2: Architecture details. In NM’s implementation, the number of epochs is determined automati-
cally based on the validation results. We found it challenging to choose a single metric to determine the
number of epochs, so we fix the number of epochs based on manual inspection of different validation
metrics.

Comparison on SGGen, P(G|I). In SGCls and PredCls, we relied on ground truth bound-
ing boxes Bgt , while in SGGen the bounding boxes Bpred predicted by a detector should
be used to enable a complete image-to-scene graph pipeline. Here, even small differences
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Model Backbone Loss SGGen-GC SGGen
R@100 RZS@100 mR@100 R@100 RZS@100 mR@100

FREQ [14] VGG16 27.6 0.02 5.6 30.9 0.1 8.9

MP [12, 14]
VGG16 BASELINE (3) 24.3 0.8 4.5 27.2 0.9 7.1
VGG16 OURS (6) 25.2 0.9 5.8 28.2 1.2 9.5

NM [14]
VGG16 BASELINE (3) 29.8 0.3 5.9 35.0 0.8 12.4
VGG16 OURS (6) 29.4 1.0 8.1 35.0 1.8 15.4
VGG16 OURS (6), NO FREQ 30.4 1.7 7.8 35.9 2.4 15.3

KERN [1] VGG16 BASELINE (3) 29.8 0.04 7.3 35.8 0.02 16.0
RelDN [16] VGG16 BASELINE (3) 32.7 − − 36.7 − −
RelDN [16] ResNeXt-101 BASELINE (3) 36.7 − − 40.0 − −
NM [10] ResNeXt-101 BASELINE (3) 36.9 0.2 6.8 − − −
NM+TDE [10] ResNeXt-101 BASELINE (3) 20.3 2.9 9.8 − − −
VCTree+TDE [10] ResNeXt-101 BASELINE (3) 23.2 3.2 11.1 − − −

Table 3: Comparison of our SGG methods to the state-of-the-art on Visual Genome (split [12]). We
report results with and without the graph constraint, SGGen-GC and SGGen respectively. All models
use Faster R-CNN [8] as a detector, but the models we evaluate use a weaker backbone compared
to [10]. Interestingly, TDE’s improvement on zero-shots (RZS) and mean recall (mR) comes at a
significant drop in R@100, which means that frequent triplets are recognized less accurately. Our loss
does not suffer from this. Table cells are colored the same way as in Table 1 in the main paper.

between Bgt and Bpred can create large distribution shifts between corresponding extracted
features (V,E) (see Section 3.1), on which SGCls models are trained. Therefore, it is im-
portant to refine the SGCls model on (V,E) extracted based on predicted Bpred , according
to previous work [1, 14]. In our experience, this refinement can boost the R@100 result by
around 3% for Message Passing and up to 8% for Neural Motifs (in absolute terms). In Ta-
ble 3, we report results after the refinement completed both for the baseline loss and our loss
in the same way. Similarly to the SGCls and PredCls results, our loss consistently improves
baseline results in SGGen. It also allows Neural Motifs (NM) to significantly outperform
KERN [1] on zero-shots (RZS@100), while being only slightly worse in one of the mR@100
results. The main drawback of KERN is its slow training, which prevented us to explore this
model together with our loss. Following our experiments in Table 1 and Figure 6 (see the
main paper), we also confirm the positive effect of removing FREQ from NM. A more recent
work of Tang et al. [10] shows better results on zero-shots and mean recall, however, we note
their more advanced feature extractor, therefore it is difficult to compare our results to theirs
in a fair fashion. But, since they also use the baseline loss (3), our loss (6) can potentially
improve their model, which we leave for future work.

Loss R@300 RZS@300 mRtr@300

BASELINE (3) 6.2 0.5 1.3
OURS (6) 6.3 0.7 2.4

Table 4: SGGen results on GQA [4] using MP.
Mask R-CNN [2] fine-tuned on GQA is used in
this task.

Finally, we evaluate SGGen on GQA
using Message Passing (Table 4), where
we also obtain improvements with our loss.
GQA has 1703 object classes compared
to 150 in VG making object detection
harder. When evaluating SGGen, the pre-
dicted triplet is matched to ground truth (GT)
if predicted and GT bounding boxes have an
intersection over union (IoU) of ≥50%, so more misdetections lead to a larger gap between
SGCls and SGGen results.
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