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A Experimental Setup

In Table 1 we list the general hyper-parameters used to train the batch learning portion of
every baseline. This setup covers the training beyond the IL phase for LILAC, DBS, RA,
and Only IL as well as the Only AC baseline. Across all the methods we ensure that the total
number of training epochs, when all the labels in the dataset are known, is held constant.

Parameters CIFAR10/100 STL10
Epochs 300 450
Batch Size 128 128
Learning Rate 0.1 0.1
Lr Milestones [90 180 260] [300 400]
Weight Decay 0.0005 0.0005
Nesterov Momentum Yes Yes
Gamma 0.2 0.1

Table 1: List of hyper-parameters used to in batch learning. Note: All experiments use the
SGD optimizer.

B Hyper-parameter Selection

Epochs in Training Interval When we vary E, the fixed training interval size in the IL
phase, we observe a dataset specific behaviour. For datasets with lesser number of total la-
bels, a larger number of epochs provides better performance while for datasets with more la-
bels, a smaller number of epochs yields better performance. While the alternate learning rate
can have a huge impact on this performance, pacing the introduction of new labels, accord-
ing to the empirical results, can have a tremendous impact on subsequent hyper-parameters
used in LILAC.
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Property Performance (%)
CIFAR-10 CIFAR-100 STL-10

E = 1 95.13 ± 0.175 78.21 ± 0.236 72.59 ± 0.476
E = 3 95.20 ± 0.200 78.73 ± 0.139 73.03 ± 0.380
E = 5 95.32 ± 0.044 78.57 ± 0.102 73.08 ± 0.996
E = 7 95.32 ± 0.156 78.44 ± 0.265 73.13 ± 1.460
E = 10 95.26 ± 0.185 77.98 ± 0.218 73.27 ± 0.220

Label Order: Rnd. 95.30 ± 0.146 78.35 ± 0.280 73.10 ± 0.861
Label Order: Difficulty 95.25 ± 0.156 78.42 ± 0.115 73.69 ± 0.849
Label Order: Asc. 95.32 ± 0.156 78.73 ± 0.139 73.27 ± 0.220

Table 2: (Top) Varying E, the fixed training interval size in the IL phase, shows a dataset
specific behaviour, with the dataset with lesser labels preferring a larger number of epochs
while the dataset with more labels preferring a smaller number of epochs. (Bottom) Com-
paring random label ordering and difficulty-based label ordering against the ascending order
assumption used throughout our experiments, we observe no preference to any ordering pat-
tern.
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Figure 1: Unsupervised classification performance on representations collected from LILAC
easily outperforms those collected from Batch Learning and Only IL methods. The plots on
the left show the common learning trend between all baselines after IL while plots on the
right show steady improvement in performance after applying AC when compared to the
baselines.

Label Order In Table 2, we compare three different orders of label introduction during the
IL phase, 1) random label order, 2) difficulty-based label order, and 3) ascending label order.
Here, difficulty-based label order is obtained from the overall classification scores per label,
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using the features from a trained model. Although these three orders do not constitute the
exhaustive set of possible label orderings, within these three possibilities there is no defini-
tive order that boosts the performance of LILAC consistently. Thus, we employ ascending
label order throughout our work.

NOTE: Only IL baseline is used throughout Table 2.

C Extended Results for Discussion: Impact of Each Phase
We include unsupervised clustering performance for CIFAR-10 and STL-10 using the k-
means and the hungarian job assignment algorithm [1] in Fig. 1. They follow similar patterns
to their supervised counterparts.
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