
RAYHAN: NOT ALL POINTS ARE CREATED EQUAL 1

Not all points are created equal - an
anisotropic cost function for facial feature
landmark location

Farshid Rayhan1

f.rayhan@manchester.ac.uk

Aphrodite Galata1

A.Galata@manchester.ac.uk

Tim F Cootes2

timothy.f.cootes@manchester.ac.uk

1 Dept of Computer Science
The University of Manchester
Manchester, UK

2 School of Health Sciences
The University of Manchester
Manchester, UK

Supplementary Materials

1 Implementation details
In our experiments, we used the PyTorch library. The training and testing of our network
were conducted on desktop with OS Mint 18, Intel i7 7700 v4 CPU, 8 GB RAM and NVIDIA
GeForce RTX 2080ti 11GB card. When training networks we used weight decay=0.0005,
momentum=0.9 and batch size of 8.

Each model was trained for 50,000 iterations. We used ResNet50 [13] for all of our
experiments and used image resolution 256×256. All the reported results are the average of
5 runs, in some cases we have also reported the standard deviation as well. To perform data
augmentation, we followed the same augmentations of [12, 30] where we randomly rotated
images [10,10] degrees. In addition, we also used random horizontal image flipping. Finally,
we randomly injected Gaussian blur (σ = 1) to 50% of the training images.

Codes: htt ps : //github.com/ f arshidrayhan−uom/ananisotropicloss

2 Datasets
We used the following three datasets in our experiments.

2.1 300W
The 300W [27] is widely used as a 2D face alignment benchmark with 68 annotated land-
marks. 300W consists of the following subsets: LFPW [2], HELEN [20], AFW [41],
XM2VTS [24] and an additional dataset with 135 images with large pose, occlusion and
expressions called iBUG. To compare with other approaches, we adopt the widely used pro-
tocol described in [26] to train and evaluate our approach. The full test dataset is split into
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two subsets, the test dataset of LFPW and HELEN is called the common test dataset, and
iBUG is called the challenge test dataset. There is also a 300W private test dataset for the
300W contest, which contains 300 indoor and 300 outdoor faces. We also evaluated our
approach on this dataset.

2.2 AFLW

The AFLW [18] dataset contains 24,368 faces with large pose variation. All faces are an-
notated by up to 21 landmarks per image, while the occluded landmarks were not labelled.
For fair comparison with other methods such as wing loss [12], adaptive wing loss [30], we
follow the protocol from [40], which provides revised annotations with 19 landmarks. The
training set contains 20,000 images, the full test dataset contains 4,368 images.

2.3 WFLW

The WFLW [31] is dataset with 98 manually annotated landmarks that constitutes of 7,500
training images and 2,500 testing images. It also provides attribute annotations including
pose, expression, illumination, make-up, occlusion and blur. The WFLW is considered more
difficult than commonly used datasets due to its more densely annotated landmarks and dif-
ficult faces with occlusion, blur, large pose, makeup, expression and illumination.
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Method NME AUC8% FR8%
ESR CVPR 14 [4] - 32.35 17.00
cGPRT CVPR 15 [21] - 41.32 12.83
CFSS CVPR 15 [39] - 39.81 12.30
MDM CVPR 16 [28] 5.05 45.32 6.80
DAN CVPRW 17 [19] 4.30 47.00 2.67
SHN CVPRW17 [35] 4.05 - -
DCFE ECCV 18 [29] 3.88 52.42 1.83
AWing CVPR 19 [30] 3.56 55.76 0.83
AWing CVPR 19* [30] 3.6 55.7 0.9
Anisotropic loss * 3.15 ± 0.2 56.87 ± 0.13 0.49 ± 0.18

NME AUC10% FR10%
M3-CSR16Õ [5] - 47.52 5.5
Fan et al. 16Õ [10] - 48.02 14.83
DR + MDM CVPR 17 [1] - 52.19 3.67
JMFA17Õ [6] - 54.85 1.00
LAB CVPR 18 [31] - 58.85 0.83
AWing CVPR 19 [30] 3.56 64.40 0.33
AWing CVPR 19* [30] 3.6 64.45 0.4
Anisotropic loss * 3.15 ± 0.2 66.08 ± 0.09 0.26 ± 0.11

Table 2: Evaluation on the 300W private dataset. We report mean and variance of
Anisotropic loss for 5 runs. ’∗’ indicates the experiments we ran.

3 Experiments

Method Common Challenging Fullset
Subset Subset

Inter-pupil Normalisation
CFAN-ECCV 14 [37] 5.5 16.78 7.69
SDM-CVPR 13 [34] 5.57 15.4 7.5
LBF-CVPR 14 [25] 4.95 11.98 6.32
CFSS-CVPR 15 [39] 4.73 9.98 5.76
TCD-CN 16 [38] 4.8 8.6 5.54
MDM-CVPR 16 [28] 4.83 10.14 5.88
RAR-ECCV 16 [33] 4.12 8.35 4.94
DVLN-CVPR17 [32] 3.94 7.62 4.66
TSR-CVPR17 [22] 4.36 7.56 4.99
DSRN-CVPR18 [23] 4.12 9.68 5.21
DCFE-ECCV18 [29] 3.83 7.54 4.55
LAB-CVPR18 [31] 3.42 6.98 4.12
Wing-CVPR18 [12] 3.27 7.18 4.04
Wing-CVPR18* [12] 3.31 7.20 4.17
Awing-CVPR 19 [30] 3.77 6.52 4.31
Anisotropic loss * 3.12 ± 0.2 6.25 ± 0.47 3.94 ± 0.34

Inter-ocular Normalisation
PCD-CNN-CVPR 18 [16] 3.67 7.62 4.44
CPM+SBR-CVPR 18 [7] 3.28 7.58 4.1
SAN-CVPR 18 [7] 3.34 6.6 3.98
LAB-CVPR 18 [31] 2.98 5.19 3.49
Awing-CVPR 19 [30] 2.72 4.52 3.07
Awing-CVPR 19* [30] 2.8 4.58 3.12
Anisotropic loss * 2.35 ± 0.15 4.05 ± 0.5 2.91 ± 0.22

Table 1: Evaluation on the 300W testset. We report mean and variance of Anisotropic loss
for 5 runs. ’∗’ indicates the experiments we ran.
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b
a

1 2 3 4 5 6

1 3.3 3.29 3.21 3.15 3.01 3.03
2 3.45 3.38 3.22 3.01 2.95 3.01
3 3.58 3.25 3.14 2.98 2.91 2.98
4 3.69 3.33 3.14 2.91 3.07 3.06

Table 3: A comparison of different parameter settings (a and b) for the proposed loss func-
tion, measured in terms of the normalised mean error on 300W (Inter ocular normalisation)
using ResNet50.

dataset
CNN

Res18 Res34 ResNet50 ResNet101 DenseNet121 DenseNet 169 Wide Resnet50

300W 4.12* 3.99* 3.94 3.97* 4.37 3.96* 3.98*
AFLW 1.8 1.5* 1.3 1.7 2.1 1.8 1.7
WFLW 4.31* 4.11* 4.01 4.01* 4.27* 4.09* 4.03*

Table 4: A comparison of different CNNs using on 300W, WFLW and AFLW dataset using
Anisotropic loss using NME. Values displayed are the mean of 5 runs. ’∗’ denotes the results
that surpass the state of the art but is not the best score.

Table 1, 5 and 2 displays a comparison among different state of the art models against
Anisotropic loss where Anisotropic loss achieves the best result.

In table 3, we observe that for a given value for b, as we increase the value for a the error
starts to improve. Since a allows the landmarks to slide along the curve, by giving more
freedom on this axis we allow the network to prioritise more on the movement orthogonal to
the curve, thus the results improve. However for a given value for a, as we start to increase
the value for b, the error usually starts to increase. This occurs because any movement
orthogonal to the curve results in predictions that essentially deviates from shape of the
face/curve.

We report the mean of 5 runs of state of the art CNNs such as ResNet [13], DenseNet
[15] in table 4, Wide ResNet [36] on 300W, AFLW and WFLW dataset using Anisotropic
loss . The most evident part of that table is that all the values are very close which means
Anisotropic loss works well regardless of the dataset or the CNN architecture. ResNet50
performs overall the best on 2 datasets and provides the same as ResNet101 on the WFLW
dataset. For consistency, we used the ResNet 50 for all our experiments. We also denote
using ’∗’ the results that are state of the art but not the best using those above mentioned
network which further demonstrates the effectiveness and robustness of Anisotropic loss .
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