Supplementary Materials

In this document, we give additional information of the following topics related to our paper:

the mathematical derivation for the re-arrangement of the cross-entropy term in the VAE ELBO loss (Section A),

an algorithmic demonstration for our block coordinate ascent algorithm (Section B),

the derivation for the reconstruction likelihood in VAE ELBO loss when a Laplace likelihood is used (Section C),
and details of the datasets and pre-processing, experiment set-up, model architecture, ablation study and more results
(Section D, E and F).

A. Mathematical Derivations

Here we give details of the mathematical derivation for the re-arrangement of the cross-entropy term in the VAE ELBO loss,
which is mentioned in Section 2 and 3.1 of the main texts.

A.1. Re-arrangement of cross-entropy wrt prior

The cross-entropy term [E,, , () Eqy, (z)x)[log p(z)] appears as 3 in Eq (2) in the main texts. It is commonly used as a
regulariser to the sample posteriors g, (z|x). With the following re-arrangement, we show that this term is in fact an
alignment requirement between the prior distribution p(z) and the inferred aggregate posterior ¢4(z), i.e. the population
distribution of all the samples in the learnt latent space. The re-arrangement is done as follows:
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When a cross-entropy is maximised between two distributions, the two distributions will try to have more overlaps and the
optimal solution will be reached when the two distributions become the same. Therefore, this cross-entropy term in the
ELBO objective simply implies that the optimal prior should be matching the aggregate posterior.

A.2. Re-arrangement of the Cross-entropy between Hyper Prior and Aggregate Hyper Posterior

A similar re-arrangement for the cross-entropy term in the prior VAE ELBO (Eq (4) in the main texts) can be also achieved
in the following equations. This result indicates that the optimal hyper prior p(t) should be chosen to best fit the aggregate
hyper posterior ¢g,4(t), which is defined as an average encoding of all possible data encodings projected to the ¢-space.
This fitting is crucial and failure to do so will result in poor modelling performance as shown in Section 4.1 of the main texts
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for the hierarchical model.
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aggregate hyper posterior gy g(t) = /qﬂ(t|z)q¢,(z)dz =Ky, (2)[96(t]2)] = Eq, (2)[qs(t|2)]. (13)

B. Block Coordinate Ascent Algorithm

Here we give an algorithmic demonstration for our block coordinate ascent algorithm, which is introduced in Section 3.3 of
the main texts as our optimisation strategy for all the model parameters in our LaDDer model (i.e. the data VAE parameters
6, ¢, the prior VAE parameters «, 8 and the GMM hyper prior £).

Algorithm 1 Block coordinate ascent to optimise model parameters 6, ¢, «, 3, &

o, 0 a f < Initialize parameters
& < Initialize as unit Gaussian
repeat until convergence of L”(x; 6, ¢, o, 8, &)
6, ¢ + Update by optimising L" (x; 6, ¢ | o, 8, £) using AdamOptimiser
a, § < Update by optimising £'(z; o, 8 | £, ¢) using AdamOptimiser
& + At the end of an epoch, update by optimising £(t; £) using the updates in coordinate ascent (Blei et al., 2006)
return 0, ¢, o, 3, &

C. Laplace Distribution to Model the Decoder Likelihood

Throughout our experiments, we use a Laplace distribution to model the reconstruction likelihood py(x;|z) (i.e. D in Eq (2)
from the main texts). Here we give the mathematical details of this distribution and it will become clear that this choice of
the decoder distribution results in a L1 reconstruction error loss in the overall learning objective, which is more suited for
modelling image data. The derivation follows the idea proposed in (Lin et al., 2019).

The Laplace likelihood is defined as
T L o, et —pi(@)
po(x;|z) zggexp—f, (14)
where o is a hyper parameter which we also optimise under the ELBO objective. Substituting the above equation into the
negative ELBO loss in Eq (2) of the main texts, we have
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where E,,  (x[-] is omitted. Now it is clear that the reconstruction likelihood (D) simplifies to an element-wise absolute error
(or L1 norm) also labelled as (I) here.
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D. Datasets and Pre-processing

We ran experiments on MNIST, Fashion MNIST and CelebA datasets. For all datasets, we take the images as real-valued
data. Here we give details of these datasets and how we pre-process them for our training the VAE models in Section 4 of
the main texts.

D.1. MNIST and Fashion MNIST

MNIST and Fashion MNIST datasets both consist of a training and a test set with 60k and 10k images of hand-written
digits/clothes, where each image is a 28 x28 grey-scale image. We rescale the original images so that the pixel values are
within the range [0, 1].

D.2. CelebA

CelebA dataset consists of 202599 RGB images of celebrity faces. We first resize all the images to 128 x 128 and rescale
the pixel values to be within [0, 1]. We then randomly select 20k images (about 10%) to be the test set.

E. Model Architectures and Training Parameters
E.1. MNIST and Fashion MNIST

We use CNN architectures for both MNIST and Fashion MNIST encoder and decoder network (with additional depth to
space operations for the decoder), as detailed below. We use the exactly same network for both datasets.

Encoder network:

x € R¥®*2*1 _, Symmetric padding — R32*32*! — Conviy® (stride =2) — ReLU
— Convy;? (stride=2) — ReLU
— Conva2 (stride=2) — ReLU
— FCg¢y — FCy, = p € R%

N
FC4. — ReLU = o € R%

Decoder network:

z =i+ €® 0 — FCyp9s — ReLU — Reshape — R *1x409%
— depth to space, — R¥***256 _; ConviX? (stride=1) — ReLU
— depth to space, — R¥*8*04 — Convi;? (stride=1) — ReLU
— RIOXI6XI6 _ Convix? (stride=1) — ReLU

— Convy*® (stride = 1, padding=valid)

R28><28><1

— depth to space,
— depth to space, — R32*32x4

— Sigmoid — Reshape = & €
Prior VAE network:

z — (FCs12 — Leaky ReLU) x 3 — FC4, — p; € R%
pY
FC4, — ReLU = o, € R%
t =+ €O o — (FCs12 — Leaky ReLU) x 3
—FCy, — 2 €R%:
d, is the dimension of z-space, d; is the latent dimension of our prior VAE, p is code mean and o is decoder variance

parameter introduced in Section C, € ~ A(0,Z) and unless otherwise specified the padding in the convolution operation is
’same’. We use the following hyper-parameters to train the network:
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Batch size d, dy N epoch Optimizer Learning rate Padding
256 16 2 50 Adam 5x 1071 SAME
E.2. CelebA

For CelebA dataset, we implement a CNN encoder and a Style-GAN generator, as detailed below. Encoder network:

x € RIZBX1ZX3 _, Conviy? (stride=2) — Leaky ReLU
— Conviy? (stride=2) — Leaky ReLU
— Convix3 (stride=2) — Leaky ReLU
— Conva.? (stride=2) — Leaky ReLU
— Convi)5 (stride=2) — Leaky ReLU
— Conv333, (stride =2, padding=valid) — Leaky ReLU
— FCs15 — FCy. = pe R
p
FCy, = o € R%

Decoder network which is inspired by the Style-GAN architecture is given below. The Style Module refers to a fully
connected a layer that first doubles the channel dimensions and then merges the channel dimension back to the original
dimension by summing the first half channels with the original channel value weighted second half channels. This operation
is modified from the original Style-GAN generator to fit with a VAE model.

z=p+e®0 — (FCs2 — Leaky ReLU) x 8 — Reshape — R!*1*512

— Resize?s2 — CNNZ? — Instance Norm — Style Module — R?*2*512

— Resizelss — CNNZ5 — Instance Norm — Style Module — R**4*512

— ResizelsS — CNNZ;5} — Instance Norm — Style Module — R8*8*512
. o16x16 3x3 16X 16x256
— Resize 95~ — CNNjz¢" — Instance Norm — Style Module — R

— Resizep; “*? — CNN3X? — Instance Norm — Style Module — R32%32%256

— Resized;*%* — CNNPS? — Instance Norm — Style Module — R54% 64128
— Resizess> 1?8 — CNN3X2 — Instance Norm — Style Module — R128%128x128
— CNN$JJ — Leaky ReLU — CNN3*? — R128x128x3

Prior VAE network:

z — (FCs12 — Leaky ReLU) x 5 — FCy, — p; € R%
N\
FC4, — ReLU = o, € R%
t = p +e€® o — (FCs12 — Leaky ReLU) x 5
—FCy, — 2€R%:

We use the following hyper-parameters to train the network:

Batch size d, dy N epoch Optimizer Learning rate Padding
256 256 32 75 Adam 5x 1071 SAME

F. More Experimental Results

Now we show more results that supplement the results from the main texts. We give more generated samples from each
VAE model, FID scores on the MNIST and fashion-MNIST datasets, an ablation study on the impacts of the prior VAE’s
latent dimension on the overall modelling performance and finally more examples of latent space interpolation using the
derived latent distribution.
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F.1. Generated Samples from Inferred Prior Distribution

Here we generate samples from the inferred prior distribution of each VAE model. The sample quality indicates how well
the prior distribution matches the learnt latent data distribution. As can be seen, our method and GMM prior produce the
best quality samples. However, in the higher dimensional latent space which is often needed for more complex datasets such
as CelebA, our method outperforms the GMM prior. It is also very clear that the standard VAE with a normal prior fails to
represent the inferred data distribution at all. This calls for caution in using the unit Gaussian prior if the inferred latent
distribution is actually needed to represent the realistic data samples in later tasks.
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(a) MNIST. (b) Fashion MNIST. (c) CelebA.

Figure 1. 100 images generated from the inferred prior distribution in our LaDDer model for each of the 3 datasets.
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(a) MNIST. (b) Fashion MNIST. (c) CelebA.
Figure 2. 100 images generated from the inferred prior distribution in a GMM-VAE model for each of the 3 datasets.
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(a) MNIST. (b) Fashion MNIST. (c) CelebA.

Figure 3. 100 images generated from the inferred prior distribution in VampPrior model for each of the 3 datasets.
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(a) MNIST. (b) Fashion MNIST. (c) CelebA.

Figure 4. 100 images generated from the inferred prior distribution in a VAE with a hierarchical prior for each of the 3 datasets.
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(a) MNIST. (b) Fashion MNIST. (c) CelebA.

Figure 5. 100 images generated from the inferred prior distribution in standard VAE (normal prior) for each of the 3 datasets.

F.2. FID Scores on MNIST and fashion-MNIST

In Section 4.1 from the main texts, we demonstrate that our generative prior can accurately model the inferred latent data
distribution by evaluating the FID scores of both generated and reconstructed samples. We pay special attention to the
difference in the visual quality between the generation and reconstruction. This is because the reconstruction samples quality
of a VAE indicates the best sample quality the VAE can generate (if the prior 100% matches the inferred data manifold
point-by-point). We give the FID score for CelebA dataset in the main texts. Here we also give the FID scores for MNIST
and fashion-MNIST datasets, which tell a very similar story that our LaDDer model can generate very good quality samples
and the gap between generation and reconstruction is small.

Table 1. FID scores (lower is better) of generated and reconstructed samples from 5 VAE models with different priors. Our generative
prior and GMM hyper prior achieves best sample quality in both generation and reconstruction and the minimal gap between the two.

Dataset Prior model Normal VampPrior GMM Hierarchical Ours Real image
Generation 4014 +4.4 472 £3.6 23+£0.5 524 +4.7 64+13

MNIST digit Reconstruction 2.1+08 1.4 £04 25+08 54+14 24+04 23+04
Difference 3993 £52 458 £4.0 -02£1.3 470+ 3.3 40+ 1.7
Generation 266.1 £2.4 23.6 £12 6.0+ 1.0 2438 £2.9 52+£09

MNIST fashion | Reconstruction 32104 3.0£02 29+04 1.8£02 1.0£04 04 +0.1
Difference 2629 £2.8 206 £ 14 3114 2420 £ 3.1 42+13

An interesting effect shown here is that the VAE model with a GMM prior also achieves very good performance. We reckon
this is because the MNIST datasets are relatively simple and hence a GMM fitting in a relatively low-dimensional z-space
can match the overall data distribution fairly well. However, when the dataset becomes more complex, such as the CelebA
dataset, our generative prior is more flexible and outperforms the GMM prior, as shown in the main texts Section 4.1.

F.3. Ablation Study: the Impact of Hyper Latent Dimension on Performance

Here we carry out an ablation study on the impact of the latent dimension of our prior VAE model on the overall modelling
performance, specifically on the generation quality. Over all three datasets, the generation quality improves as we allow the
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prior VAE to adopt a higher latent dimension. However, the benefit of increasing the latent dimension diminishes as the
dimension reaches certain level. This indicates that the dimension reduction achieved by the prior VAE module is still valid
and does not limit the model’s performance as long as its latent dimension is not set to be overly small.

Table 2. FID scores (lower is better) of generated samples from our generative prior with different latent dimension d;. It is clear with
higher latent dimension, the generation improves. However, the benefits diminish as the dimension increases.

Ours .
Dataset o 7d sd T6d 2d Real image
MNIST digit 587+ 1.8 35.1 £ 8.1 64+13 6.9 £0.8 N/A 23+04
MNIST fashion | 253 + 1.6 99412 55+0.7 52409 N/A 04 £ 0.1
CelebA 1757+ 0.5 1484 £ 0.6 1384+ 0.5 1335+ 0.6 1327405 | 59405

F.4. Latent Space Interpolation Through Our Shortest Likelihood Path

In the main texts, we demonstrate how to use the estimated latent distribution to facilitate further tasks through a latent
space interpolation example. We show that the derived latent distribution can inform the interpolation to only step on high
likelihood regions in the latent space. As a result, the inferred samples remain realistic throughout the path and render
smooth transitions into the target image. Here, we show more examples on the interpolation task and we also show our
shortest likely path traversal on two other VAE models to indicate it can be generally applied to other methods. Across the
interpolation results, the interpolation informed with the learnt latent distribution generates better samples. The exception is
the VAE with a normal prior and this is because the normal prior poorly models the true data distribution.
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Figure 6. Latent space interpolation between a pair of CelebA images. We show the interpolated images for 3 VAE models: (b) our
proposed LaDDer, (c) a GMM prior and (d) a normal prior. For each method, top row gives the interpolation of our shortest likely path
(SLP) method and bottom row gives the interpolation of the shortest path (SP) method.
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Figure 7. Latent space interpolation between a pair of CelebA images. We show the interpolated images for 3 VAE models: (b) our
proposed LaDDer, (c) a GMM prior and (d) a normal prior. For each method, top row gives the interpolation of our shortest likely path
(SLP) method and bottom row gives the interpolation of the shortest path (SP) method.
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