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This supplementary material contains training details as well as more results for multi-
domain image translation and retrieval.

1 Training Details

1.1 Detailed Training Objective
The loss function comprises of a collection of smaller learning objectives, each weighted
according to their importance. In the following we enumerate the equations and provide a
brief explanation for their choices.
The standard adversarial losses are given in (1) and (2). While L joint tries to find the joint
distribution, Lmarg aims at finding the marginal distribution. Here, x and y are sampled from
two different (arbitrary) domains and are therefore weakly paired. Note, that y represents an
image from domain c. D j and Dm denote the joint and marginal discriminator, respectively.

L joint(G,D j) = Ex,y[log(D j(x,y))]+Ex,c[log(1−D j(x,G(x,c)))] (1)

Lmarg(G,Dm) = Ex[log(Dm(x))]+Ex,c[log(1−Dm(G(x,c)))] (2)

The learned GAN feature loss (3) is computed between the generated image and the corre-
sponding target image. Here, D(i)

j denotes outputs of intermediate layers of the joint discrim-
inator where T is the total number of intermediate layers. Ni denotes the number of elements
in each layer and vi are the assigned weights. These weights are monotonically decreasing,
meaning that we put greater emphasis on on lower-level features.

L f eat(G,D j) = Ex,y,c[
T

∑
i=1

vi
1
Ni

∥∥∥D(i)
j (x,y)−D(i)

j (x,G(x,c))
∥∥∥

1
] (3)
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Conversely, a perceptual VGG loss (4) is applied between the generated image and the input,
where the weights wi are a monotonically increasing. By assigning greater weight to higher-
level features, we hope to preserve image semantics such as cars and pedestrians. In this
equation F(i) denotes intermediate layers of a pretrained VGG19 network where U is the
total number of layers that are used for feature extraction. Mi denotes the number of elements
in each layer.

Lvgg(G) = Ex,c[
U

∑
i=1

wi
1

Mi

∥∥∥F(i)(x)−F(i)(G(x,c))
∥∥∥

1
] (4)

Similar to StarGAN [2] we introduce a domain classification loss (5) and (6), penalizing false
domain predictions of the fake and real images, respectively. Since we have binary encoded
labels, we use Binary Cross Entropy Loss.

L f
cls(G,Dm) =−Ex,c[c log(Dm,cls(G(x,c)))+(1− c) log(1−Dm,cls(G(x,c)))] (5)

Lr
cls(Dm) =−Ex,c[c log(Dm,cls(x))+(1− c) log(1−Dm,cls(x))] (6)

The regularization in (7) for the attention mask M(x,c) is chosen so that the generated mask
never fully reaches zero, since that would make the mask redundant. Note, that this is a
monotonically decreasing function. To smooth out the mask a total variation loss (8) is
applied.

Latt(G) = Ex,c[log(‖M(x,c)‖1)+
1

‖M(x,c)‖1
] (7)

LTV (G) = Ex,c[
H,W

∑
i, j=1

[(Mi+1, j(x,c)−Mi, j(x,c))2 +(Mi, j+1(x,c)−Mi, j(x,c))2]] (8)

Full Objective. The full training objectives for G, D j and Dm are given below.

LG = L joint +λmargLmarg +λ f eatL f eat +λvggLvgg +λclsL f
cls +λattLatt ++λTVLTV (9)

LD = LD j +LDm = L joint +λmargLmarg +λclsLr
cls (10)

1.2 Training Specifications

All models were trained for 30 epochs on a single GPU for about 4 days. The learning rate
is constant for 20 epochs and linearly decayed to 0 for the following 10 epochs. The batch
size is 6, λmarg = 100.0, λ f eat = 100.0, λvgg = 10.0, λcls = 1.0, λatt = 1.0, λTV = 0.0001.
Image size is (256x256). Other model parameters were set to default according to SPADE.
With 4 upsampling layers, the generator has around 100 million parameters, whereas the
discriminator has around 30 million.
When training the model we noticed that the GAN feature loss seemed to be very unstable.
The authors of SPADE argue that this loss was crucial in generating good looking samples.
Indeed, when disabling this loss the generated images get significantly worse.
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2 More Image Translation Results

Figure 1 shows several failure cases where the input domain is WNO. The model is able
to capture the different styles of each domain. However, it produces severe artifacts when
translating images from night to day. Since the domain conditioning of our model consists of
binary encoded labels, we can arbitrarily create any sort of combinations. Figure 2 shows re-
sults from these "mixed domains" where the class labels are (SNS - Summer, Night, Sunny),
a paradoxical domain, and (WDR - Winter, Day, Rain). Interestingly, the model is able to
generate samples from WDR despite never seeing samples from this domain during training.
This suggests that our model may have an understanding of each individual attribute within
the class label. Lastly, additional images from other ablation models are shown in Figure 3.

Input WDSn WNO WDSu SDO SDR

Figure 1: The input domain is WNO. The columns indicate the respective target domain,
while the second row depicts the corresponding attention masks.

(a) Input (b) SNS (c) WDR (e) Input (f) SNS (g) WDR

Figure 2: Mixed Domain examples. Input domain is WDO for both cases.

Input no_mask no_gen
align

no_classify
loss

stack_discr Final Target

Figure 3: Ablation Study. Images from other ablation models.
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3 More Image Retrieval Results

Figure 4 is obtained with the same experimental setup as Figure 7 in our paper. Figure 7 in
the paper, however, reports the average retrieval accuracy over all query conditions, while
Figure 4 shows the results for each query condition separately.
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Figure 4: Top-1 retrieval accuracy on the Oxford RobotCar dataset for three different ref-
erence conditions (from top to bottom: sunny, snow and overcast) and three different query
conditions (from left to right: overcast, snow and sunny) as a function of the distance thresh-
old d for correct retrieval. The plots highlight the influence of image domain translation as
an initial step for easier cross-domain image retrieval. We compare our method to GANi-
mation [5] and SPADE [4] by combining each with three different image retrieval networks
from [1] and [6] that have been trained either on the Pittsburgh [7] dataset or the Oxford
RobotCar [3] dataset.
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