
PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL 1

Learning Non-Parametric Invariances from
Data with Permanent Random
Connectomes: Supplementary Material

Dipan K. Pal
dipanp@andrew.cmu.edu

Akshay Chawla
akshaych@andrew.cmu.edu

Marios Savvides
marioss@andrew.cmu.edu

Dept. Electrical and Computer Engg.
Carnegie Mellon University
Pittsburgh, PA, USA

Abstract

In this supplementary material, we provide a proof for Lemma 2.1 in the main paper,
a more complete table of results including different parameter comparisons of NTPN
baselines, timing results of our more efficient CUDA implementation and the pseudocode
for PRCN-NPTNs. Further, we present results on the dataset ETH-80 consisting of 3D
viewpoint variations of objects in comparison with previous work. Finally, we present
results on CIFAR 10 with vanilla DenseNets and PRCN applied to DenseNets to form
DensePRC-NPTNs.

1 Appendix

Prior Art using Alternate Architectures. Several works have explored alternate deep layer
architectures. A few of the main developments were the application of the skip connection
[3], depthwise separable convolutions [1] and group convolutions [7]. Randomly initialized
channel shuffling is an operation that is central to the application of permanent random con-
nectomes. However, deterministic non-randomized channel shuffling was explored while
optimizing networks for computation efficiency [8]. Nonetheless, none of these methods
explored permanent and random connectomes from the perspective of explicitly learning
invariances from data itself.

Invariances in a PRC-NPTN layer. Recent work introducing NPTNs [6] had high-
lighted the Transformation Network (TN) framework in which invariance is generated dur-
ing the forward pass by pooling over dot-products with transformed filter outputs. A vanilla
convolution layer with a single input and output channel (therefore a single convolution fil-
ter) followed by a k× k spatial pooling layer can be seen as a single TN node enforcing
translation invariance with the number of filter outputs being pooled over to be k× k. It has
been shown that k× k spatial pooling over the convolution output of a single filter is an ap-
proximation to channel pooling across the outputs of k× k translated filters [6]. The output

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Chollet} 2017

Citation
Citation
{Xie, Girshick, Doll{á}r, Tu, and He} 2017

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Pal and Savvides} 2019

Citation
Citation
{Pal and Savvides} 2019

2 PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL

3 4 5 6 7

Depth (# of layers)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r
(x

T
im

e
s
)

Wall Time Speedup

Memory Decrease Factor

(a) Depth

1 2 3 4

CMP (channel max pooling)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r
(b) CMP

20 40 60 80 100 120

Width (# of channels)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r

(c) Width

5 10 15 20

G (growth factor)

1

1.5

2

2.5

3

3.5

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r

(d) Growth Factor
Figure 1: Computational efficiency improvements of our CUDA kernel implementations.

ϒ(x) of such an operation with an input patch x can be expressed as

ϒ(x) = max
g∈G
〈x,gw〉 (1)

where G is the set of filters whose outputs are being pooled over. Thus, G defines the set
of transformations and thus the invariance that the TN node enforces. In a vanilla convo-
lution layer, this is the translation group (enforced by the convolution operation followed
by spatial pooling). An NPTN removes any constraints on G allowing it to approximately
model arbitrarily complex transformations. A vanilla convolution layer would have one filter
whose convolution is pooled over spatially (for translation invariance). In contrast, an NPTN
node has |G| independent filters whose convolution outputs are pooled across channel wise
leading to general invariance.

A PRC-NPTN layer inherits the property from NPTNs to learn arbitrary transformations
and thereby arbitrary invariances using G. Individual channel max pooling (CMP) nodes act
as NPTN nodes sharing a common filter bank as opposed to independent and disjoint filter
banks for vanilla NPTNs. This allows for greater activation sharing, where transformations
learned from data through one subset of filters can be used for invoking similar invariances
in a parallel computation path. This sharing and reuse of activation maps allows for higher
parameter and sample efficiency. As we find in our experiments, randomization plays a crit-
ical role here, allowing for a simple and quick approximation to obtaining high performing
invariances. A high activation map can activate multiple CMP nodes, winning over multiple
sub-sets of low activations. Gradients flow back to these winning activations updating the
filters to further model the features observed during that particular batch. Note that, CMP
nodes in the same layer can pool over disjoint subsets to invoke a variety of invariances,
leading to a more versatile network and also better modelling of a particular kind of invari-
ance as we find in our experiments. Further, the primary source of invoking invariances in
NPTN was understood to be the symmetry of the unitary group action space [6]. General
invariances were assumed to be only approximately forming a group. Lemma 1.1 shows
that group symmetry is not necessary to reduce variance of the quantity maxϒ(x) due to the
action of the set elements g on some test input patch x. Though, the result makes a strong
assumption regarding the distribution of ϒ(x), it to the best of our knowledge the first result
of its kind to show increased invariance without a group symmetric action.

Efficacy on CIFAR10 Image Classification. MNIST was a good candidate for the
previous experiment where the addition of nuisance transformations such as translation and
rotation did not introduce any artifacts. However, in order to validate permanent random
connectomes on more realistic data, we utilize the CIFAR10 dataset and AutoAugmentation
[2] as the nuisance transformation. Note that, from the perspective of previous works in
network invariance, it is unclear how to hand craft architectures to handle invariances due

Citation
Citation
{Pal and Savvides} 2019

Citation
Citation
{Cubuk, Zoph, Mane, Vasudevan, and Le} 2018

PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL 3

to the variety of transformations that AutoAugment invokes. Here is where the general
invariance learning capability of PRC-NPTNs would help, without the need of expertise in
such hand-crafting.

We replace vanilla convolution layers with kernel size 3 in DenseNets with PRC-NPTNs
without the 2-layered pooling networks. There was another modification for this experiment.
For each input channel of a layer, a total of |G|= 12 filters were learnt. However only a few
of them were pooled over (channel max pool or CMP). We pool with CMP = 1, 2, 3 or 4
channels randomly keeping |G|= 12 fixed always. Note that in contrast with the MNIST ex-
periment, pooling was always done over |G| number of channels (CMP=|G|). This provides
a different setting under which PRC-NPTN can be utilized. All models in this experiment
were trained with AutoAugment and were tested on both a) the original testing images and
also on b) the test set transformed by AutoAugment. Similarly to the previous experiment, a
model would have learn invariance towards these auto-augment transformations in order to
perform well. All DenseNet models have 12 layers with the PRC-NPTN variant having the
same number of parameters to enable us to perform multiple runs in a reasonable amount of
time. The lower accuracy compared to other studies can be accounted by this. We train 5
models for each setting and report the mean and standard deviation of the errors. Training
5 runs for each of the hyperparameter combination to account for the randomization is yet
another reason which tended to result in unreasonably large experiment times. Importantly,
the goal of this experiment is not to push the state-of-the-art, but rather to investigate the be-
havior of DensePRC-NPTNs within the limits of computational resources available for this
study while executing 5 runs for each network.

Discussion. Table. 1 presents the results of this experiment. We find PRC-NPTN pro-
vides clear benefits even with architectures employing heavy use of skip connections such as
DenseNets with the same number of parameters. Performance seems to increase as channel
max pooling increased. Further, randomization seems to be important to the overall archi-
tecture even when given the complex nature of real image transformations. PRC-NPTN
helps DenseNets account for nuisance transformations better even for those as extreme as
auto-augment with its 16 transformation types ShearX/Y, TranslateX/Y, Rotate, AutoCon-
trast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout,
Sample Pairing to various degrees. With these evidence, it is interesting to find that random
connectomes can be motivated from the perspective of learning heterogeneous invariances
from data without any change in architectures. We find that they provide a promising alter-
nate dimension in future network design in contrast to the ubiquitous use of highly structured
and ordered connectomes.

Evaluation on the ETH-80 dataset The ETH-80 dataset was introduced in [5] as a
benchmark to test models against 3D pose variation of various objects. The dataset contains
80 objects belonging to 8 different classes. Each object has images from different viewpoints
on a hemisphere for a total of 41 images per object. The images were resized to 50× 50
following [4]. This dataset is perfectly poised to test how efficiently a model can learn
invariance to 3D viewpoint variation.

Protocol: For this experiment, we devise a new protocol in which we train on one half of
the horizontal views and test on the other half. We randomly split the vertical views between
these train and test sets. We test with the same set of architectures as in the main paper with
the same experimental settings. This protocol is harder since the other side of the object is
not seen along with the objects not being symmetrical. Results are shown in Tab. 2. The
results follow a similar tread to that of the original protocol described in the main paper.
We find PRC-NPTN outperforms all other methods using a almost 3X less parameters and

Citation
Citation
{Leibe and Schiele} 2003

Citation
Citation
{Khasanova and Frossard} 2017

4 PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL

(a) Trans 0 pix (b) Trans 4 pix (c) Trans 8 pix (d) Trans 12 pix
Figure 2: Individual Transformation Results: Test error statistics with mean and standard
deviation on MNIST with progressively extreme transformations with random pixel shifts.
For PRC-NPTN and NPTN the brackets indicate the number of channels in the layer 1 and
G. ConvNet FC denotes the addition of a 2-layered pooling 1×1 pooling network after every
layer. Note that for this experiment, CMP=|G|. Permanent Random Connectomes help with
achieving better generalization despite increased nuisance transformations.

Method CIFAR10 (w/o Random) CIFAR 10++ (w/o Random) Speed Memory
DenseNet-Conv 11.47±0.19 - 21.37±0.29 -
DensePRC-NPTN (CMP=1) 11.82±0.20 13.33±0.23 22.03±0.08 23.88±0.38 1.29x 2.92x
DensePRC-NPTN (CMP=2) 10.78±0.31 11.67±0.36 20.71±0.23 21.90±0.33 1.34x 1.96x
DensePRC-NPTN (CMP=3) 10.95±0.12 11.59±0.23 20.95±0.20 21.80±0.42 1.36x 1.64x
DensePRC-NPTN (CMP=4) 10.61±0.11 11.41±0.12 20.80±0.12 21.47±0.16 1.36x 1.48x

Table 1: Efficacy on CIFAR10: Test error statistics on CIFAR10 with mean and standard
deviation. ++ indicates AutoAugment testing. Each DenseNet and its corresponding PRC-
NPTN variant has the same number of parameters. |G| = 12 for PRC-NPTN and growth
rate was kept at 12 for DenseNet-Conv. (w/o Random) indicates no randomization in the
connectomes constructed (as an ablation study). The speed and memory improvements are
multiplicative improvement factors of our CUDA kernel implementation compared to base-
line optimized PyTorch code.

Figure 3: Sample images from the ETH-80 database. The dataset contains 80 objects
belonging to 8 different classes. Each object has images from different viewpoints on a
hemisphere resulting in 3D pose and viewpoint variation for each object.

PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL 5

Method (Protocol 2) Accuracy (%) #parameters Reduction #filters (3×3) Reduction

ConvNet [4] 84.49 1.4M 230 -
ConvNet B 95.58 110K 1× 3780 1×
ConvNet B (1×1) 94.33 115K 0.95× 3780 1×
NPTN-large B (3) 94.58 189K 0.58× 11268 0.33×
NPTN-small B (3) 94.70 120K 0.91× 4356 0.86×
PRC-NPTN B (8, 2) 94.34 97K 1.13× 708 5.33×
ConvNet C 95.44 116K 1× 12740 1×
ConvNet C (1×1) 94.40 138K 0.84× 12740 1×
PRC-NPTN C (8, 2) 94.68 64K 1.81× 1220 10.44×
PRC-NPTN C (8, 4) 95.63 39K 2.97× 1220 10.44×

Table 2: Test accuracy on ETH-80 Protocol 2. For NPTN is number in the bracket denotes
|G|, for PRC-NPTN the numbers denote |G| and CMP respectively.

almost 10X fewer 3x3 filters. These results show that PRC-NPTN are more effective in
learning even out of the plane invariances from data itself without any change in architecure.

1.1 Proof of Lemma 2.1
Lemma 1.1. (Invariance Property) Assume a novel test input x and a filter w both fixed
vectors ∈ Rd . Further, let g denote a random variable representing unitary operators with
some distribution. Finally, let ϒ(x) = 〈x,gw〉, with ϒ(x)∼U(a,b) i.e. a Uniform distribution
between a and b. Then, we have

Var(maxϒ(x))≤ Var(ϒ(x)) = Var(〈g−1x,w〉)

Proof. Let X be the random variable representing the randomness in 〈x,gw〉 for fixed x,w
and random g. We assume that X ∼U(0,1).

Considering a sample set X1,X2...Xn ∼U(0,1) , then X(n) = max1≤i≤nXn . Now,

P(X(n) ≤ x) = P(Xi ≤ x,∀i) (2)

= P(Xi ≤ x)n (3)
= xn (4)

Let the density of X(n) be denoted by fX(n)(x), then

fX(n)(x) =

0 x≤ 0

nxn−1 0≤ x≤ 1
1 x≥ 1

Now,

E[X(n)] =
∫ 1

0
xnxn−1dx =

xn+1

n+1
n|10 =

n
n+1

E[X2
(n)] =

∫ 1

0
x2nxn−1dx =

xn+2

n+2
n|10 =

n
n+2

Therefore,

Var(X(n)) =
n

n+1
−
(

n
n+1

)2

=
n

(n+2)(n+1)2

Citation
Citation
{Khasanova and Frossard} 2017

6 PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL

1: class PRCN-NPTN:
2: def init(self, inch, outch, G, CMP, kernelSize, padding, stride):
3: self.G = G
4: self.maxpoolSize = CMP
5: self.avgpoolSize = int((inch*self.G)/(self.maxpoolSize*outch))
6: self.expansion = self.G*inch
7: self.conv1 = nn.Conv2d(inch, self.G*inch, kernelSize=kernelSize, groups=inch, padding=padding,

bias=False)
8: self.transpool1 = nn.MaxPool3d((self.maxpoolSize, 1, 1))
9: self.transpool2 = nn.AvgPool3d((self.avgpoolSize, 1, 1))

10: self.index = torch.LongTensor(self.expansion).cuda()
11: self.randomlist = list(range(self.expansion))
12: random.shuffle(self.randomlist)
13: for ii in range(self.expansion):
14: self.index[ii] = self.randomlist[ii]
15:
16: def forward(self, x):
17: out = self.conv1(x) #inch −→ G*inch
18: out = out[:,self.index,:,:] # randomization
19: out = self.transpool1(out) # G*inch −→ inch*G/maxpool
20: out = self.transpool2(out) # inch*G/(maxpool*meanpool) −→ outch
21: return out

Figure 4: PRC-NPTN pseudo-code.

Since the variance of U(0,1) is 1
12 i.e. Var(Xi) =

1
12 , and Var(X(n)) is a decreasing function

in n, along with the fact that Var(X(n)) for n = 1 is 1
12 , we have

Var(X(n))≤ Var(Xi)

For general U(a,b), it follows shortly after considering Yi =
Xi−a
b−a and that Var(Yi) =

Var(Xi). Finally, due to unitary g, 〈x,gw〉= 〈g−1x,w〉.

References
[1] François Chollet. Xception: Deep learning with depthwise separable convolutions. In

Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[2] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V
Le. Autoaugment: Learning augmentation policies from data. arXiv preprint
arXiv:1805.09501, 2018.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[4] Renata Khasanova and Pascal Frossard. Graph-based isometry invariant representation
learning. In International Conference on Machine Learning, pages 1847–1856, 2017.

PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL 7

Rotation 0◦ *** 30◦ *** 60◦ *** 90◦ ***
ConvNet (36) 0.70±0.03 - 0.92±0.03 - 1.32±0.07 - 1.93±0.02 -
ConvNet (36) FC 0.66±0.05 - 0.80±0.03 - 1.08±0.02 - 1.58±0.01 -
ConvNet (512) 0.65±0.04 - 0.80±0.02 - 1.14±0.03 - 1.54±0.03 -
NPTN (36,1) 0.68±0.04 - 0.93±0.01 - 1.35±0.05 - 1.92±0.02 -
NPTN (18,2) 0.66±0.02 - 0.87±0.04 - 1.18±0.02 - 1.67±0.03 -
NPTN (12,3) 0.68±0.06 - 0.84±0.02 - 1.19±0.01 - 1.64±0.02 -
NPTN (9,4) 0.64±0.01 - 0.88±0.05 - 1.21±0.03 - 1.65±0.02 -
PRCN (36,1) 0.62±0.08 0.62±0.06 0.84±0.01 0.83±0.03 1.17±0.05 1.19±0.02 1.72±0.05 1.73±0.06
PRCN (18,2) 0.61±0.02 0.57±0.02 0.68±0.02 0.73±0.02 0.93±0.04 0.99±0.04 1.24±0.01 1.33±0.02
PRCN (12,3) 0.58±0.03 0.62±0.04 0.72±0.02 0.74±0.02 0.95±0.01 1.04±0.04 1.28±0.01 1.33±0.01
PRCN (9,4) 0.63±0.02 0.62±0.04 0.75±0.03 0.77±0.02 0.99±0.03 1.05±0.03 1.31±0.03 1.40±0.03

Translations 0 pixels *** 4 pixels *** 8 pixels *** 12 pixels ***
ConvNet (36) 0.69±0.04 - 0.72±0.01 - 1.22±0.02 - 4.43±0.05 -
ConvNet (36) FC 0.60±0.02 - 0.64±0.01 - 0.88±0.05 - 3.49±0.11
ConvNet (512) 0.63±0.02 - 0.64±0.01 - 1.00±0.02 - 3.56±0.04 -
NPTN (36,1) 0.68±0.04 - 0.73±0.02 - 1.23±0.01 - 4.42±0.08 -
NPTN (18,2) 0.61±0.04 - 0.63±0.02 - 1.11±0.02 - 4.10±0.08 -
NPTN (12,3) 0.66±0.02 - 0.64±0.02 - 1.09±0.04 - 4.19±0.04 -
NPTN (9,4) 0.65±0.05 - 0.65±0.03 - 1.16±0.04 - 4.42±0.07 -
PRC-NPTN (36,1) 0.65±0.02 0.65±0.05 0.58±0.01 0.61±0.04 1.02±0.03 1.00±0.04 3.85±0.11 3.83±0.10
PRC-NPTN (18,2) 0.59±0.07 0.59±0.03 0.52±0.03 0.58±0.02 0.80±0.03 0.88±0.05 3.23±0.03 3.34±0.06
PRC-NPTN (12,3) 0.63±0.02 0.66±0.08 0.55±0.02 0.59±0.01 0.84±0.04 0.89±0.03 3.35±0.04 3.52±0.12
PRC-NPTN (9,4) 0.65±0.02 0.69±0.03 0.56±0.03 0.56±0.03 0.88±0.02 0.97±0.02 3.49±0.46 3.69±0.08

Table 3: Individual Transformation Results: Test errors on MNIST with progressively ex-
treme transformations with a) random rotations and b) random pixel shifts. ∗∗∗ indicates
ablation runs without any randomization i.e. without any random connectomes (applica-
ble only to PRC-NPTNs). For PRC-NPTN and NPTN the brackets indicate the number of
channels in the layer 1 and G. ConvNet FC denotes the addition of a 2-layered pooling
1×1 pooling network after every layer. Note that for this experiment, CMP=|G|. Permanent
Random Connectomes help with achieving better generalization despite increased nuisance
transformations.

[5] Bastian Leibe and Bernt Schiele. Analyzing appearance and contour based methods for
object categorization. In Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on, volume 2, pages II–409. IEEE, 2003.

[6] Dipan K Pal and Marios Savvides. Non-parametric transformation networks for learning
general invariances from data. AAAI, 2019.

[7] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 1492–1500, 2017.

[8] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018.

8 PERMANENT RANDOM CONNECTOME NETWORKS: SUPPLEMENTARY MATERIAL

Rot/Trans 0◦ 0 15◦ 2 30◦ 4 45◦ 6 60◦ 8 75◦ 10 90◦ 12
ConvNet (36) 0.68±0.03 0.72±0.02 1.31±0.02 2.32±0.04 5.06±0.04 10.90±0.08 19.60±0.16
ConvNet (36) FC 0.64±0.03 0.66±0.01 0.95±0.04 1.50±0.02 3.42±0.03 8.14±0.11 15.61±0.11
ConvNet (512) 0.66±0.05 0.65±0.02 0.97±0.02 1.60±0.04 3.50±0.04 7.90±0.06 15.19±0.09
NPTN (36,1) 0.71±0.04 0.78±0.02 1.27±0.02 2.35±0.03 5.02±0.14 11.08±0.09 19.66±0.33
NPTN (18,2) 0.65±0.02 0.68±0.02 1.09±0.02 1.94±0.04 4.17±0.06 9.59±0.10 17.92±0.20
NPTN (12,3) 0.66±0.02 0.69±0.03 1.07±0.03 1.85±0.02 4.24±0.11 9.58±0.06 17.79±0.16
NPTN (9,4) 0.64±0.01 0.71±0.02 1.09±0.04 1.98±0.04 4.41±0.09 9.78±0.16 18.14±0.16
PRC-NPTN (36,1) 0.61±0.03 0.70±0.01 1.09±0.04 1.80±0.02 3.93±0.02 9.09±0.11 17.03±0.13
PRC-NPTN (18,2) 0.57±0.02 0.58±0.01 0.77±0.02 1.21±0.07 2.74±0.04 6.78±0.12 13.79±0.08
PRC-NPTN (12,3) 0.59±0.03 0.58±0.01 0.78±0.02 1.26±0.02 2.91±0.05 7.13±0.09 14.23±0.07
PRC-NPTN (9,4) 0.63±0.04 0.59±0.02 0.81±0.02 1.35±0.02 3.12±0.02 7.26±0.02 14.62±0.16

Table 4: Simultaneous Transformation Results: Test errors on MNIST with progressively
extreme transformations with random rotations and random pixel shifts simultaneously.
For PRC-NPTN and NPTN the brackets indicate the number of channels in the layer 1 and
G. Note that for this experiment, CMP=|G|.

