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1 Prior Art

Self-supervised learning has recently garnered a lot of attention from the community. For
a brief overview of various techniques and methods, we encourage the reader to refer to
[13]. Self-supervision has proven to be effective in areas other than vision such as NLP
[4, 33], robotics and reinforcement learning [8, 11, 20, 21, 28]. One of the main methods
of performing self-supervision to learning useful features is to solve a pretext task. Such a
task is chosen that is ideally computationally cheap and more importantly, one that allows the
training on a ‘good’ representation. [10]

Pretext task based methods. Several pretext tasks have been proposed for self-supervision.
For instance, solving a patch-based jigsaw puzzle [6, 14, 22], predicting color channels
[16, 34, 35], predicting rotations on images [9], learning features through reversing inpainting
[26], and learning to count [23]. Utilizing spatial context as a supervision signal was also
explored [5]. Studies found that learning robustness to corruptions in input was also an
effective pretext task [26, 30]. Geometric transformations were found to be useful to learn
representations in the study [7], however it did not predict the instance or the transformation
but rather aimed to learn invariance towards them. This is different from a VTSS task which
predicts the exact instance of the transformation applied. Another recent task that has shown
considerable promise is to match a query representation to other keys in a set belonging to the
same image [10]. Other methods utilize clustering even after utilizing a pretext task [2, 24].
There also have been similar pretext tasks proposed on videos such as solving jigsaws on
video frames [1, 31]. Augmenting and then predicting rotations on videos was also found to
offer a useful self-supervision signal [12]. Contrastive predictive coding [25] and contrastive
multiview coding [29] are other successful method which utilized some form of prediction of
the data. In the real-world, the laws of physics along with time constantly provide valuable
transforming data. These temporal based visual transformations can be yet another source of
supervision as explored by [17, 19, 27, 32].
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2 Supervision from the Transformation Perspective
The Transformation Model of Visual Images. We adopt a model of data transformations
which accounts for all the variation that is seen in general data. Given an image which when
vectorized results in a seed vector x sampled from a seed distribution Px, it is first acted upon
by the transformation gk : Rd → Rd i.e. gk(x; θk). This transformation gkG is parameterized
by θk and generates a sample from the specific class k. For brevity, we drop the notation
for the parameters and express a sample as gk(x). The transformations gk are complex and
non-linear, and can introduce features into a particular sample that to a receiver might appear
to be associated to a particular class. For instance, gk could potentially be features of a
particular individual in the case of face recognition, or features of a face at a particular pose
for pose estimation.

The Transformation Paradigm of Supervised Classification. In the context of super-
vised classification, different instantiations of the parameters θk along with different seed
vectors x give rise to all of the samples that can be observed for class k in training and
testing. Training data is assumed to include only a subset of all possible combinations of the
parameters. Testing data would be sampled from the remaining space of combinations. Note
that we do not account for any relation or overlap between gk and g j for classes k and j. For
classification, given an input image gk(x), a classifier F is tasked with predicting the class
output k. In other words, the task is to predict which of the k transformations from the set G
was applied.

Self-Supervision from the Visual Transformation Perspective. The transformation
framework is general and can be applied to any classification problem, including self-
supervision. A general self-supervision task utilizing a particular transformation g would
allow all data variation or transformations to be accounted for in the seed distribution Px inde-
pendent of g. In fact, the different classes are simply gk where k is a particular instantiation
of the transformation g. For instance, self-supervision based on rotation would be modelled
as g being the in-plane rotation transformation and k being a particular instantiation of it e.g.
90◦ clockwise. Note that for a self-supervision task under this framework, all image data is
modelled as seed vectors in the distribution Px with gk being a particular instantiation of a
transformation, including the identity transformation e.

Overall Observation: Effectiveness of VTSS Rotation. Our results indicate that VTSS
Rotation seems to consistently perform better than translation and scale when applied individ-
ually. The VTSS hypothesis also begins to offer a probable justification as to why. The degree
to which translation and scale are applied as part of the VTSS task to learn these features
(which were effective nonetheless), are small. Larger variation we found typically reduced
performance given a fixed sized image (see Fig. 1(b) and Fig. 1(c) in the supplementary).
These transformations are likely to exist in subtle amounts at similar ranges to those that
were applied as part of the VTSS task. This leads to the detrimental effect of transformation
conflict (see Fig. 1(b)). On the other hand, VTSS Rotation was found to work well at large
ranges (90) in the original study [5]. Nonetheless, rotation seldom occurs naturally in most
datasets at such large ranges (including real-world ones). Our VTSS hypothesis therefore
predicts that rotation is a particularly well-suited transformation for VTSS for general visual
data.

VTSS hypothesis and Invariance based methods. SimCLR [3], PIRL [18] and MoCo
[10] has recent techniques which promote invariance towards common transformation but
for a large number of unlabelled data. Although the VTSS hypothesis does not hold for
these tasks as in, the effect of transformation conflict nonetheless applies. This would be
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Figure 1: Results of the Ablation study: Effect of Transformation Range on VTSS Rotation
[9],Translation and Scale on CIFAR 10.

the case when two samples that are negative to wards each other end up very similar under
two different transformations. The representation learnt would be sub-optimal in a such
case. Nonetheless, given that such the range of transformations are far richer than the pretext
task based methods, it is unlikely for those methods to suffer from this effect. Nonetheless,
the effect of transformation conflict must be kept in mind. The VTSS hypothesis on the
other hand provides valuable insight into what is necessary for a succesful application of a
self-supervision method.

3 Appendix: Additional Ablation Studies, Details and
Observations

General Hyperparameters. For each transformation and dataset, the evaluation protocol
and hyperparameters remained constant. The self-supervised backbone network and the
fully-supervised network were both trained on the training set for all training samples (unless
specified) for 200 epochs. The learning rate was set at 0.1 and multiplied by 0.02 at 60, 120
and 180 epochs with SGD with a batch-size of 128, momentum of 0.9 and weight decay
of 5× 10−4. However, for every transformation to added in for a particular VTSS task,
e.g. rotation, the entire batch was transformed by that augmentation and added to the batch.
However, for the VTSS hypothesis confirmation studies only the transformations were added
into this original 128 sized batch as an ablation study. For this, if there are K different
instantiations of the transformations to be added in, then the 128 sized batch was divided by
K and each shard was transformed by one instantiation. Once the self-supervised network
was trained, the weights till the second conv block were frozen and a classifier on top was
added. The tables in the main paper (Tables 1 and 2) were not performed with any data
augmentation. However,for the ablation studies in this supplementary, we performed standard
data augmentation of random crops with a 2 pixel padding with randomized horizontal flips.
Interestingly, we find that VTSS translation is effective even with such augmentation.

Further Details in Architecture. All networks consisted of units or blocks called a conv
block. Each conv block consisted of 3 conv layers with 192 channels, each followed by
batch normalization and ReLU. The fully-supervised and self-supervised backbone networks
consisted of 4 conv blocks (unless specified otherwise) with average pooling of kernel size
3, stride 2 and padding 1 after each block. The semi-supervised classifier was trained on
conv block 2 features after training the self-supervision model. The semi-supervised classifier
added consisted of a single conv block with 192 channels, global average pooling followed by
a single linear layer.

Ablation A: Effect of Transformation Range. We trained a backbone feature extractor
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Figure 2: Results of Ablation B. Effect of number of self-supervised and supervised
samples.

network (RotNet) with the VTSS rotation task for different sets of rotations1 on CIFAR 10.
There was no independent rotations added (as in our VTSS hypothesis confirmation study)
other than the rotations added by the VTSS task itself. We also perform this experiment
similarly for the VTSS translation and scale tasks. In this case, we steadily increase the
number of directions the translation is added in and correspondingly increase the number of
classes for prediction. Lastly, the pixel range of the translation was also varied. For VTSS
Scale, the number of scales and the range was varied.

Results. The results of this experiment are presented in Fig. 1(a), Fig. 1(b) and Fig. 1(c).
We find that though predicting more rotation angles help, the improvement is marginal.
Further, predicting even a single instantiation of the transformation resulted in the learning of
useful representations. These results are consistent with those reported in the original study
[9]. In this case of translation however, we find a significant increase initially after which there
are diminishing returns. It is interesting to note that VTSS translation learnt useful features
even with a single pixel shift (on each side) (while using traditional data augmentation). In
fact, the 5 pixel shift performs only marginally better. However, a 8 pixel shift (therefore a
total crop of just 32-16=16) deems excessive for a 32 sized dataset and drastically decreases
performance. For VTSS Scale, it was difficult to find an overall trend. Nonetheless, we find
that representations learned are in general poor. This we hypothesis is largely due to the
existence of scale variation already in CIFAR. However, it is interesting to note that a scale
variation of even 1 and 2 pixels can be useful for representation learning.

Ablation B: Effect of number of self-supervised and supervised samples. Typically,
self supervision tasks are trained on as much data as possible. This is primarily due to
the availability of inexpensive self-labels. However, we explore the case where there is a
imbalance of data between the self-supervision task and semi-supervision tasks. We increase
the number of samples available per class through {20,100,400,1000,5000} samples for
both the VTSS Rotation and the downstream semi-supervision tasks.

Ablation B: Results. Fig. 2 showcases the results of this experiment. Interestingly,
we find that the performance increases linearly at almost identical rates for both the self-
supervision and the downstream semi-supervision tasks. For instance, the performance of a

1We provide additional ablation studies in the supplementary
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Figure 3: Results of Ablation C. Effect of number of classes used for self-supervision.

1000 samples/class for VTSS and just 20 samples/class for semi-supervised learning is very
similar to 20 samples/class for VTSS and 1000 samples/class for semi-supervised learning.
We find similar trends for other settings. This highlights the benefits of VTSS tasks. For a
particular amount of data with an inexpensive self-labelling scheme, VTSS provides a level
of performance to the downstream classifier similar to that of a semi-supervised model which
was trained with the same amount of labeled data. Nonetheless, such linear parallels between
VTSS and downstream semi-supervision are encouraging.

Ablation C: Effect of number of classes used for self-supervision. VTSS tasks are
typically applied to a wide array of data. However, what is the level of returns that a VTSS
task provides given a steady increase in both diversity and amount of data? For this experiment,
we train the same 4 conv block layered network with VTSS Rotation given {1,2,3,5,8,10}
classes. We are interested in the trends with which the performance increases w.r.t the
downstream semi-supervised accuracy.

Ablation C: Results. The results of this experiment are presented in Fi.g 3. We find that
the downstream semi-supervision performance increases as expected. However, the returns
are diminishing. Indeed, though when there are 5000 samples/class available for training
the semi-supervised network, the performance saturates with just 5 classes=5000 samples
in total for the VTSS task. Similar trends are observed for the cases where there are lower
samples/class available for semi-supervised learning. This suggests that though VTSS tasks
are powerful, they seem to be hitting a barrier to the diversity of features that the model can
learn. Attention must be paid to other aspects of the learning problem such as the size of
the network, architecture etc. [15] in order to further allow improvements leveraging more
self-supervised data.

Additional Observation: Effectiveness of VTSS tasks in general. Taking a step back
from a detailed inter-transformation analysis, we observe the performance of self-supervision
followed by semi-supervised tasks. Recall that the original VTSS backbone network consisted
of 4 conv blocks of three conv layers each. Then, only the first two conv blocks were used
as a fixed feature extractor for the semi-supervised classifier on top that was trained. This
classifier consisted of a single conv block that is identical to the other blocks. Therefore, in
Table 1 and Table 2 in the main paper, the fully supervised networks or FS with 3 blocks
had similar complexity to the overall self and then semi-supervised models, and provided a
fair comparison from the perspective of model complexity. Yet, in the case of SVHN and
FMNIST, we find that VTSS Rotation performs better than FS 3 blocks for the full crop
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setting (including scale for FMNIST). For the center crop experiments, VTSS R+T performs
better than FS 3 blocks for SVHN. This showcases the overall effectiveness of VTSS tasks in
general compared to fully-supervised networks of similar complexity.
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